In vitro and in vivo study to the biocompatibility and biodegradation of hydroxyapatite/poly(vinyl alcohol)/gelatin composite.
نویسندگان
چکیده
A novel porous composite material composed of hydroxyapatite, poly(vinyl alcohol) (PVA), and gelatin (Gel) was fabricated by emulsification. Scanning electron microscopy showed that the material had a well-interconnected porous structure including many macropores (100-500 microm) and micropores (less than 20 microm) on their walls. The composite had a porosity of 78% and showed high water absorption up to 312.7% indicating a good water-swellable behavior that is a characteristic of hydrogel materials. When immersed in water, the scaffold's weight continuously decreased. After immersion in simulated body fluid, the weight continuously increased because Ca(2+) and PO(3-) (4) ions deposited on the surface and the internal surfaces of the material pores. The deposit was proved to be carbonated hydroxyapatite by thin-film X-ray diffraction, Fourier transform infrared spectroscopy and energy dispersive X-ray analysis. The composite was detected to be non-cytotoxicity by MTT assay. The HA/PVA/Gel material was also implanted subcutaneously in the dorsal region of adult female rats. After 12 weeks of implantation, the porous material adhered tightly with the surrounding tissue, and the ingrowth of fibrous tissue as well as the material's partial degradation was observed, which partly indicated that the composite was biocompatible in vivo. In conclusion, the porous HA/PVA/Gel composite is a promising scaffold for cartilage tissue engineering with more studies.
منابع مشابه
Evaluation of Biopolymers Effect on In vitro Biocompatibility Property of Nano Hydroxyl Apatite Composites
In this work, we report the effect of biopolymers (starch and gelatin) on in vitro biocompatibility property of nano hydroxyapatite (nHAp) composites. Cell culture and MTT assays were performed for in vitro biocompatibility. They show that nHAp can affect the proliferation of cells and the nHAp-starch and nHAP-gelatin biocomposites have no negative effect on the cell morphology, viability and p...
متن کاملSynthesis, characterization and biocompatibility evaluation of hydroxyapatite - gelatin polyLactic acid ternary nanocomposite
Objective(s): The current study reports the production and biocompatibility evaluation of a ternary nanocomposite consisting of HA, PLA, and gelatin for biomedical application.Materials and Methods: Hydroxyapatite nanopowder (HA: Ca10(PO4)6(OH)2) was produced by burning the bovine cortical bone within the temperature range of 350-450 oC followed by heating in an oven at 800. Synthesis of the te...
متن کاملEvaluation of Biopolymers Effect on In vitro Biocompatibility Property of Nano Hydroxyl Apatite Composites
In this work, we report the effect of biopolymers (starch and gelatin) on in vitro biocompatibility property of nano hydroxyapatite (nHAp) composites. Cell culture and MTT assays were performed for in vitro biocompatibility. They show that nHAp can affect the proliferation of cells and the nHAp-starch and nHAP-gelatin biocomposites have no negative effect on the cell morphology, viability and p...
متن کاملSynthesis of pH Sensitive Hydrogels Based on Poly Vinyl Alcohol and Poly Acrylic Acid
In this research, hydrogels based on poly vinyl alcohol and poly acrylic acid blend were prepared which were cross-linked by applied thermal conditions. Afterward, effects of time and heating on water uptake were investigated. The highest water uptake value exhibited by the sample that was heated for 20 min. at 110 ºC was about 2129% after 4 days at equilibrium state. Hydrogels exhibited p...
متن کاملElectrospun biocompatible Gelatin-Chitosan/Polycaprolactone/Hydroxyapatite nanocomposite scaffold for bone tissue engineering
In recent years, nanocomposite scaffolds made of bioactive polymers have found multiple applications in bone tissue engineering. In this study composite nanofibrous structure of gelatin (Gel)/chitosan (Cs)-polycaprolactone (PCL) containing hydroxyapatite (HA) were fabricated using co-electrospinning process. To assay the biocompatibility and bioactivity of electrospun nanocomposite scaffolds, t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of biomedical materials research. Part A
دوره 85 2 شماره
صفحات -
تاریخ انتشار 2008